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ABSTRACT

Towards the ultimate goal of AI that features agents capable of generalizing to
unseen domains, many researchers have recently voiced their support towards
Pearl’s counterfactual theory of causation as a key milestone. As in any other
growing subfield, patience seems to be a virtue since significant progress on inte-
grating notions from both fields takes time, yet, major challenges such as the lack
of ground truth benchmarks or a unified perspective on classical problems such as
computer vision seem to hinder the momentum of the research movement. This
work takes a first, informal look at the Pearl Causal Hierarchy (PCH) for image
data. We moreover discuss several challenges that naturally arise when applying
key concepts from causality to the study of image data.

1 INTRODUCTION AND RELATED WORK

The Pearlian counterfactual theory of causation (Pearl, 2009) has increasingly found support in
the AI/ML community (Schölkopf, 2022; Peters et al., 2017; Geffner et al., 2022). An increasing
presence of publications at major conferences/journals concerned with the integration of causality
with AI/ML (including (Janzing & Schölkopf, 2018; Lee & Bareinboim, 2019; Zečević et al., 2021)
to mention a select few), but also the establishment of new conferences such as CLeaR, suggests a
growing subfield that sets a consensus on causal AI/ML as answer to question “what do we need
for successful domain generalization?”. Still, as the difficulty of the integration with otherwise
prominent success stories of deep learning such as computer vision becomes apparent, countering
opinions start speaking out against causal AI/ML (Bishop, 2021). Nonetheless, we take the arguably
agreed upon perspective pro causal AI/ML and we specifically try addressing challenges that arise
when viewing computer vision from a causal viewpoint.

Naturally, we are not the first to discuss causality in terms of computer vision. Several works at
popular venues such as CVPR (including (Sauer & Geiger, 2021; Lv et al., 2022; Liu et al., 2022) to
mention a select few) have taken on the challenge. Most notably, Sanchez & Tsaftaris (2022) looked
at both diffusion models and causality, like this work, however, with the goal of counterfactual image
generation opposed to a consistent interpretation of the PCH in terms of images.

In Sec.2 we will present a first, informal interpretation of the PCH on image data, that is, for each
of the levels of the hierarchy, what would corresponding images look like. In Sec.3 we discuss four
different challenges to the perspective discussed prior that might come as surprising and that pose
difficulties to finding models that can successfully generate a correct hierarchy on image data. Lastly,
in Sec.4 we provide some last reflective thoughts on the presented introspection of the community’s
progress towards generalization using causal computer vision. We also provide an appendix with
additional considerations for potential benchmark tasks of interest for evaluating future models.

2 A FIRST INTERPRETATION OF THE CAUSAL HIERARCHY ON IMAGES

The center model of study in causality is the structural causal model (SCM) which is defined as a
4-tuple M := ⟨U,V,F , P (U)⟩ where the so-called structural equations (which are deterministic
functions) vi = fi(pai, ui) ∈ F assign values (denoted by lowercase letters) to the respective
endogenous/system variables Vi ∈ V based on the values of their parents Pai ⊆ V \ Vi and
the values of some exogenous variables Ui ⊆ U (sometimes also referred to as unmodelled or
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nature terms), and P (U) denotes the probability function defined over U. The SCM formalism
comes with several interesting properties. They induce a causal graph G and they induce what
is known as the Pearl Causal Hierarchy (PCH). Pearl & Mackenzie (2018) provide an intuitive
account to the topic. The hierarchy (sometimes also referred to as ladder) consists of three levels.
The first, L1, is about observational/associational distributions over V with typical questions being
“What is?”, for example “What does the symptoms tell us about the disease?”. While on L1 we
are only concerned with a single observational distribution, on the second and the first causal level,
L2, we have infinitely many interventional/hypothetical distributions with typical questions being
“What if?”, for example “What if I take an aspirin, will my headache be cured?”. Finally and again
infinitely many, counterfactual/retrospective distributions can be found on the third level, L3, with
typical questions being “Why?”, for example “Was it the aspirin that cured my headache?”. A
key result and sort of “sanity check” for research in causality was the establishment of the Causal
Hierarchy Theorem (Bareinboim et al., 2020) which suggests (a) that any SCM will imply the PCH
as just discussed with its L1 associational, L2 interventional and L3 counterfactual levels, and
more fundamentally (b) that causal quantities (Li, i ∈ {2, 3}) are in fact richer in information than
statistical quantities (L1), and that there exists a necessity of causal information (e.g. structural
knowledge, essentially “outside” model knowledge) for inference based on lower rungs e.g. L1 ̸⇒
L2 and therefore to reason about L2 or to identify such causal quantities we need more than only
observational data from L1. To conclude, consider the formal definition of valuations for the highest
layer (L3) since it subsumes the other two layers as previously pointed out:

p(ab, . . . , cd) =
∑

U p(u) where U = {u | Ab(u) = a, . . . ,Cd(u) = c},
for instantiations a,b, c,d of the node sets A,B,C,D ⊆ V and they represent different “worlds”.
The counterfactual Ab(u) refers to the value A attains when B was deliberately set to b in situation
u. E.g. for L1 we might only consider A = A∅, whereas for L2 a single alternate world Ab. Next,
we define for the first time informally the Li for images. We start with the standard case L1, then L3

as it is easier to develop from the previous and then conclude with L2. We summarize the insights
collected in this section in a comprehensive schematic in Fig.1 that highlights both the hierarchical
nature and the requirements for commuting between the different levels.

L1 on Images. In computer vision, we work with image data which is naturally represented as
an ordered collection of pixel values commonly represented as matrices with multiple channels
(e.g. RGB). Now, a common way of linking images with causality’s SCM has been to have the
SCM act as the image generating process. That is, the SCM will not represent pixels but rather
“high level concepts” that nicely abstract the content and style of the images at hand. E.g. V could
be specifying concepts like ‘dog,’ which could be an indicator function suggesting that a ‘dog’
should be placed within the image generated through that concrete specification. However, it is
important to note that the SCM, as usual, is the sought after object of interest i.e., we do not know
the model yet. In that sense, Pearlian causality comes in handy as a tool for abstraction and simply
a language for formalizing the modelling assumptions. The first question we will answer now is,
how do observations on image data, that is, instances of L1 for images look like? The bottom image
in Fig.1 illustrates an example. We can see a dog facing the image observer with its mouth open,
tongue sticking out, ears upright, and sitting on a dry patch of lawn. The dog’s fur is orange and
white colored, the race of the dog is classified as corgi. This short description are all ‘objective’
observations using human concepts about the appearance of the image that might or might not be
captured formally in a corresponding SCM. Generally, we can state that L1 on images will simply
correspond to any image collection that we consider to be our base set of images, however, with
the important restriction that ‘related’ images are excluded. As we will see shortly, a random set of
images might very well contain such related images, which will naturally be a mix of L1/2 data.

L3 on Images. What happens if you take the image of the corgi from before and change aspects to
it? Contrary to expectations, we end up on the final level of the PCH through an intervention on the
same image. This might be counterintuitive and surprising since data augmentations are common
practice in computer vision and usually associated with pure interventions (L2). Ilse et al. (2021)
discussed one such interpretation of augmentations in a causal setting. Using modern techniques
from deep learning like stable diffusion (Rombach et al., 2022) and/or a combination of inpainting
and image editing we can generate a counterfactual image (countering the fact that we initially
observed only the corgi) where there is suddenly a red apple placed right in front of the corgi on
the lawn. In terms of an SCM that captures high level concepts on content, we can say that the
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Figure 1: Pearl Causal Hierarchy on Image Data. In the first level, L1, we are given some base
image XL1 like the one shown that pictures a corgi facing the viewpoint. We can assume the SCM
that generated this base image to capture high level binary indicators such as V1 :=“corgi in image”
or V2 :=“apple in image” and for the base image, therefore, we observed V = (1, 0). Naturally,
unmodelled ‘details’ U are concerned with specifications on what the corgi should look like, its
pose, but also the background amongst others. Therefore, we have XL1

= f(V,U). To jump to
the second level, L2, we can simply change V by intervening with do(V2 = 1) for instance, which
leads to the appearance of a red apple in the intervened image XL2

. Note how the background and
the corgi itself change through the intervention, this is because there is no restrection on the details
U being placed by the intervention. That is, U is different for XL1 and XL2 . Finally, on the third
level, L3, we can re-introduce that restriction by fixing U and doing the intervention to return an
image which is like XL1 up to the intervention of placing the apple. (Best viewed in color.)

exogenous terms U used for generating the actual images from the content indicators V are being
kept fixed while the V has been intervened upon such that the “apple indicator” is flipped on.

L2 on Images. To now obtain pure interventions, we need to relax the constraint that the new
image would have to fix the U terms, that is, all the noise apart from the content indicators. Put
simply, we don’t have to observe the original, base image anymore. However, we still need to
observe content for our given SCM in agreement with the base image, for example in this case
a corgi should still be found in the intervened image. An example intervention is shown in the
image on the right, which again presents a corgi and a red apple, but a different corgi on a different
background thus not being constrained by the ‘factual’ original image on all the unmodelled ‘details’
of the image. We note two observations, (1) that the intervened image is difficult to synthesize
through manual labour, that is, diffusion models open a new avenue of opportunity for creating true
interventional image distributions, and (2) that the counterfactual from L3 can really be seen as a
special case of intervened images, the one that agrees with the base image on U.

3 CHALLENGES

After our initial discussion on how one can interpret the PCH in terms of image data, exemplifying
how images corresponding to each of the levels might look, we now move on to the finer details that
come about naturally when being concerned with images, which complicate the overall problem of
causal inference on images.
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Challenge 1: Ambiguity of Interventions. We have seen how interventions can be naturally for-
mulated on the content abstraction of images, that is, if there are high level concept indicators such
as “is there a dog in the image?”, then answering ‘yes’ or ‘no’ has predictable consequences in that
a dog will or will not appear in the resulting image. However, what happens if we intervene on
not what is being placed in the image but rather what is already within the image like, say, a bird
sitting on a tree branch? If we do something like “spread the wings of the bird”, then we surely
underspecify what we mean by “spreading wings.”

Original Variant 1 Variant 2

Figure 2. The figure on the right illustrates
this idea that an intervention, especially in
textual form as just given in the example,
leaves open several aspects that somehow
need to be decided for in the final image. In
this example, the bird might spread the wings
at an angle or to a certain range of motion as
illustrated in variants 1 and 2, respectively.
This observation becomes very apparent with
cutting-edge methods in diffusion modeling currently under peer-review like Imagic (Kawar et al.,
2022) or Unitune (Valevski et al., 2022).

Challenge 2: Different Types of Interventions. In line with the discussion in the previous subsec-
tion, we could already see how “not all interventions are created equal” in that interventions can be
of qualitatively different nature.

"spread the bird's wings"

"place apple in front of  dog"
Figure 3. To be more precise, in the corgi example from
Sec.2 we simply placed an apple in front of the corgi,
whereas in the bird example we let the bird in the image
spread its wings. Consider the figure on the right that places
the examples on top of each other. The intervention in the
top row places a new object within the image and naturally
it also changes aspects of the previous image, for instance
we cannot see the parts of the corgi or lawn that is being
occluded by the newly placed apple. The intervention in the
bottom row changes the state of the intervened variable, here
the bird, in a way that is less local than previously in the ob-
ject placement intervention. While it is difficult to capture
the essence of what makes these interventions fundamen-
tally different even in informal terms, we believe the main
distinction to be that the object placement poses a pure in-
tervention on the image, whereas the wings spreading poses an intervention on the image elements.
This distinction we believe to be important because the latter contains a notion of implicit causation,
which can be seen as an indicator of the ‘plausibility’ behind the image, for instance spreading the
wings involves changing the bird’s posture, the position of its limbs etc. To make this point more
clear, imagine we placed a bone in the mouth of the corgi in the first example, this would constitute
at first sight an independent object placement intervention, however, ideally, we expect the dog to
hold it in its mouth by biting on it, which implies a causality similar to the second example with the
bird. In any case, many of these aspects are up for debate, more importantly we wish to emphasize
that the term ‘intervention’ could already be ill-posed w.r.t. image data.

Challenge 3: Inpainting versus Fine-Tuning. This challenge is concerned with two existing meth-
ods with which interventional and counterfactual images can be generated right now: inpainting
(IP) and fine-tuning of existing diffusion models (FT). In IP we generally have two options we can
either mask out certain image segments like for instance the mouth of the corgi from the first exam-
ple and then command a diffusion model to fill in the newly created gap by “placing a bone in the
corgi’s mouth”, or we can directly use photo editing software to modify the original image. In FT on
the other hand, we might deploy an approach like Imagic (Kawar et al., 2022) or Unitune (Valevski
et al., 2022) where the authors fine-tune existing diffusion models to regularize the embedding space
in such way that for any given intervention the synthesized images adhere more strongly to what is
being asked for by the intervention. For example in a method such as SDEdit (Meng et al., 2021) or
Text2Live (Bar-Tal et al., 2022) the synthesized images might ignore the intervention altogether, or
even worse corrupt the base image. Both IP and FT are techniques readily available for reproduction
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and could thus be deployed to generate a truly causal data set consisting of images from all three
levels of the PCH (even if models like Imagic and Unitune are unfortunately being kept disclosed
under intellectual property rights). However, such data set generation is practically still infeasible
since both IP and FT are costly methods for generating causal data, especially at the scale of modern
techniques of deep learning. For IP, either manual labour or the restriction to certain types of inter-
ventions (like object placement) would be necessary to synthesize interventional and counterfactual
images, while for FT, fine-tuning for each generation would be necessary, thereby rendering both
approaches practically irrelevant for synthesizing causal image data sets.

Challenge 4: Inaccuracy of Counterfactuals. In this last subsection on intricate challenges we
discuss how, not only interventions, but also counterfactuals introduce issues that complicate causal
inference on images. A counterfactual, as defined by Pearl, subsumes a three step procedure that
involves updating your beliefs on the exogenous U but also performing interventions. We have seen
ambiguities caused by interventions but similar ones also come with the exogenous ‘details’ that
constitute part of any SCM.

Figure 4. Consider the example given in the fig-
ure on the right, where the base image of a cake
is being intervened upon such that the new im-
age contains an image of a pistachio flavored cake.
Ideally, the counterfactual should be the same as
the base image up to the intervention. Yet, as we
realize from our previous discussions, what con-
stitutes ‘same’ is not clear, that is, where do we
exactly find all the aspects of the exogenous terms
within the image? The example highlights three
different distributions over U, representing dif-
ferent beliefs (or conceptions), of the exogenous
terms and what ‘same’ ought to mean. We can
clearly see that there is no ideal answer i.e., out of
all three distribution p1(U) keeps the surrounding
most constant (e.g. by looking at the wooden serv-
ing plate and the similar viewpoint) but is arguably also the “least pistachio” like out of the three.
Same arguments can be made for the other two, e.g. p3(U) even contains pieces of pistachio on
top of the cake but the background changed significantly introducing new dishware and also a very
different viewing angle. Looking at p2(U) for instance then seems to compromise between the
two previous but is significantly wider than the cake from the base image. The highlighted issue
of inaccuracy in counterfactuals becomes especially prevalent in methods such as Imagic (Kawar
et al., 2022) that make use of thresholding to simply settle for a decided notion of proximity, which
further is likely to require human supervision to ensure the image’s integrity and purpose. To move
forward, we believe that any of three beliefs about what constitutes U would have been sufficient for
most relevant tasks of interest, nonetheless, we intend on raising awareness to this intricacy which
might otherwise would have fallen under the radar, since the ambiguity otherwise naturally found in
images also naturally translates to a proximity issue for counterfactual images.

4 CONCLUDING REMARKS

The belief in the utility of causality for AI/ML permeates the ongoing narrative, uniting the com-
munity in the hope that causal models hold a significant part of the future of intelligent systems.
However, there is still a bitter taste left for many, since they do agree on the fact that being able to
answer causal queries of the interventional and counterfactual nature is desirable, but worry about
the promise never being delivered. This feeling is only being further corroborated by a lack of ex-
isting data sets, especially in domains that have historically been the success stories of AI/ML like
computer vision. But also through a lack of clarity in how the intersection of causality and computer
vision is to be understood. In this work we highlighted how we can interpret and project the Pearl
Causal Hierarchy on image data and identified challenges that come with it, therefore, providing a
clear perspective on what we might need for successful domain generalization in computer vision
for image sets that share causal relations. We hope that this work can inspire researchers by painting
a vivid picture of key ideas and emphasizing important avenues for future work.
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A APPENDIX
“TASKS OUR FUTURE MODELS NEED TO SOLVE”

Selected, additional discussions as supplementary and optional read to the main paper.

In the previous section we discussed several challenges to causal inference with images, but now we
turn our attention to actual challenges in the sense of tasks that we wish our models to be capable of
solving. We present two different tasks that arise naturally as a consequence of our interpretation of
the PCH for image data.

Previous Attempts at Causal Image Data Sets. There have been several strides in coming up
with a causal or ‘kind-of’ causal data set. For instance, Gondal et al. (2019) looked at disentangle-
ment and factors of variation and created both synthetic and real-world images of objects in different
poses, colors, etc. Singla & Feizi (2021) used manual labour on mechanical turk to study spurious
features in images, while Lynch et al. (2022) recently employed diffusion models and base assump-
tions on the underlying SCM to synthesize data sets that balance out each of the existing high level
concepts (e.g. if there was never a cow on the beach in the original data set, then now there was). All
of these aforementioned approaches mitigate some of the core issues with causal data sets, especially
for images. However, none of them have been able to fully subsume the PCH, and unfortunately,
due to the difficulties with existing techniques as highlighted in Sec.3, a truly causal image data set
seems to still be out of reach as not even brute force techniques could force enough data samples
for modern ML techniques lingering for ever-increasing data amounts. Nonetheless, we believe that
such a data set would constitute only part of the overall big picture. What do we do when given such
a ‘truly’ causal image data set? Next we try providing an answer to this question by highlighting
tasks for our future models.

A.1 TASK I: IMAGINING A COUNTERFACTUAL IMAGE

The task is being illustrated schematically in Fig.5 with the bird example from the main paper dis-
cussions. Counterfactuals pose, in Pearl’s term, the center piece to his theory of causation and
are correspondingly placed on the highest level (or rung) of the PCH. Opposed to pure interven-
tions which talk about hypothetical situations, counterfactuals are all about retrospection. That is,
through knowing about the exogenous terms U, which in the standard case imply a certain V = v
since fixing U = u results in deterministic functions v = f(pa,u), we move “back in time” and
consider an alternate world configuration. This observation also gives rise to Pearl’s opinion that
counterfactuals corresponding to ‘understanding’ and the “highest mode of human cognition” (Pearl
& Mackenzie (2018) further illustrate L3 with a cartoon sketch of Einstein reflecting on complex
inventions such as rockets or laptops). As of now, diffusion models are capable of creating coun-
terfactuals (as clearly the given examples in this paper illustrate, since they were indeed generated
with the help of diffusion models), however, they require fine-tuning or inpainting, which effectively
changes the original model (which amounts to defeating the purpose of the challenge). Therefore,
since counterfactual reasoning is desirable, and current models are not able to generate counterfactu-
als in a targeted manner, we propose in Task I to “imagine counterfactuals.” That is, given an input
tuple containing an image and an intervention, synthesize the corresponding counterfactual image.
In order to succeed in this task the queried system needs to recognize the point of intervention (here:
bird, and that particular bird in the cases that there are multiple birds) and also ‘know’ what the
consequences of the given intervention are (here: limbs moving, posture changing etc. due to the
wing spread).

A.2 TASK II: IDENTIFYING THE INTERVENTIONS WITHIN IMAGES

The intricate relation between interventions and counterfactuals becomes more apparent in the sec-
ond task that we propose, which is illustrated in Fig.6, again with the bird example. Forming a
counterfactual involves performing an intervention in a fixed-U world. The task is specified as
follows: given an input tuple containing a base image and a corresponding image in which an in-
tervention occurred, extract the corresponding intervention. The intervention is implicitly hidden
within the image and the queried system needs to be able to identify the change between the im-
ages and explicate the reason for the change (here: the bird spreading its wing). While in Task I
the queried system is concerned with the same hypothesis space (that of images) for providing the
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Input

"Can you imagine the bird 
spreading its wings?"

Target

Task I

Figure 5: Task I, “Imagining Counterfactuals.” Given an input tuple containing an image and an
intervention, synthesize the corresponding counterfactual image. (Best viewed in color.)

Input Target

Task II
"The bird (in the image)

spread its wings."

Figure 6: Task II, “Identifying Interventions.” Given an input tuple containing a base image and
a corresponding image in which an intervention occurred, extract the corresponding intervention.
(Best viewed in color.)

answer, in Task II the multi-modality switches the answering space to be in natural language. Again,
like with Task I, existing state-of-the-art methods for image captioning like X-LAN (Pan et al., 2020)
are capable of capturing precisely what is “going on” in a given image, and thus a naı̈ve solution
to Task II would be to simply look at some sensible notion of difference between the two indepen-
dently captioned images. However, we’d again be defeating the purpose since we want to have an
inherently single model being capable of solving this task by processing the input pair through some
internal representation in such way that the intervention becomes apparent.

Solving Tasks I and II. If we had a model that can solve Tasks I and II, then we’d have a model that
can (a) understand interventions and (b) use them to reason counterfactually–and all of that within
images. Nonetheless, a very important aspect to this, that fell short in the previous discussions, is the
aspect of time or dynamics unrolling. We humans know how it looks like when a bird is spreading
its wings, and so we are able to solve both Tasks I and II gracefully although being confronted
with still images (with the asteriks on Task I because a human, without aid, will not provide the
pixel values for the counterfactual image). We learn to explore the world interactively in a Markov
Decision Process type situation (see for instance the Bareinboim (2020) ICML Tutorial on Causal
Reinforcement Learning). Therefore, we need to be aware of the assumptions and restrictions we
place on the learning problem for our models when facing Tasks I and II.
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