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Causal Parrots: Large Language Models May Talk Causality But Are Not Causal
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Some argue scale is all what is needed to achieve AI, covering even causal models. We make it clear that large language models
(LLMs) cannot be causal and give reason onto why sometimes we might feel otherwise. To this end, we define and exemplify a new
subgroup of Structural Causal Model (SCM) that we call meta SCM which encode causal facts about other SCM within their variables.
We conjecture that in the cases were LLM succeed in doing causal inference, underlying was a respective meta SCM that exposed
correlations between causal facts in natural language on whose data the LLM was ultimately trained. If our hypothesis holds true,
then this would imply that LLMs are like parrots in that they simply recite the causal knowledge embedded in the data. Our empirical
analysis provides favoring evidence that current LLMs are even weak ‘causal parrots.’
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1 INTRODUCTION

Speaking of causality, the Pearlian counterfactual theory of causation has recently found prominent support in the
AI/ML community [18, 38, 42]. An increasing presence of publications at major conferences/journals concerned with the
integration of causality with AI/ML (including [24, 27–29, 32, 54] to mention a select few) suggests a growing subfield
that sets a consensus on causal AI/ML as promising paradigm for next-generation systems. Still, as the difficulty of the
integration with otherwise prominent success stories of deep learning, such as computer vision, becomes apparent,
countering opinions start to speak out against causal AI/ML [7]. In this work, we take the former perspective pro causal
AI/ML. We argue that the questions around causality can fuel research also on questions of recent debates such as how
much ‘real’ progress towards AGI has been made since the advent of large scale models such as BERT [16], GPT-3 [12],
DALL-E [40].

The following block paragraph serves as a summary of an example of such a recent debate on whether ‘just scaling’
these models is a sufficient condition for progression towards AGI:

With the rise of large scale models such as BERT, GPT-3, DALL-E, AI history suggests to repeat itself as arguably
impressive text generation and image synthesis results foster different opinions in the community in terms of
interpretation regarding the progression of the field as a whole towards the grand goal of AGI (key references
involve [30, 31] that sparked intense discussions amongst notable researchers via social networks; also for reference,
a short treatise that discussed patterns in the history of AI research observes: “early, dramatic success followed
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2 Willig et al.

by sudden unexpected difficulties.” [14]). Some even speak of foundation models [8] to account for the “emerging
paradigm” of models that provide a base from which task-specific models are derived through adaptation. The
emergence of what seem to be the two dominant clusters of opinions within the discussion around foundation
models is characterized by researchers who recognize said models as significant progression towards AGI and those
who do not. For the former group of the observed results act as corroborating evidence for the scaling hypothesis
[11, 46] which captures that the idea of emergent properties as a result of scaling neural network in terms of
parameters and data, thereby, rooting parts of the overarching idea in results from neuroscience that suggest the
human brain to ‘just’ be a scaled up primate brain [21]. The other popular opinion is that the achieved results act as
a mere reflection of the sheer scale of data and parameters, put differently “the methods are old” and their lack of
interpretability and reasoning capabilities will remain persistent. While many researchers voiced there opinions
and thoughts, one notable comment came from Judea Pearl who announced his alliance with the latter position via
social media, stating “These models are castles in the air. They have no foundations whatsoever.” discrediting the
models for lacking any identifiable notion to causality.

It is clear how resolving these discussion through scientific inquiry is crucial for the AI/ML community. The question
of the whether or not Pearl’s statement is true was one of the seeds that grew in to the present paper.

Therefore, in this paper, we investigate whether current foundation models are such “castles in the air.”

We identify the key problem of ongoing debates to lie in the scale of data and parameters that only further cement
the inherently black-box nature of the base models. Therefore, to answer whether such “foundation models” have made
progress towards AGI and to give reason onto why causal AI/ML could be a milestone, it seems to suffice to ask and
investigate the question of the extent to which foundation models can talk causality. For the sake of simplicity, we will
take the “talking” literally and focus on LLMs in this work while leaving general foundation models (e.g. image-based
models) for future work.1

The paper is structured as follows: we investigate how ‘causal’ LLMs are by first formalizing our key hypothesis on
“correlations of causal facts” using Pearl’s language, introducing necessary new ideas along the way with illustrative
examples, posing our key theoretical contribution. Following that, we provide an empirical analysis on the causal
prowess of current LLMs and discuss the results in lights of our theoretical groundwork from the beginning, posing our
second contribution.

For reproduction purposes we make our code repository for the empirical part publicly available.2

2 INFORMAL SUMMARY OF THE MAIN IDEA OF THE PAPER

LLMs are transformer-based models [51] and it is clear how they are not parameterized variants of SCMs such as the
neural ones presented in [53] as they do not specify structural equations mimicking causal mechanisms. Nonetheless,
they do seem to answer causal questions right sometimes. Our explanation for this is that they are not only ‘stochastic
parrots’ as already suggested by Bender et al. [6] but sometimes also ‘causal parrots’ since they will also encounter
correlations over causal facts during training in their vast oceans of textual data. Essentially, you can train LLMs to tell
you anything that sounds nice to you, in this case ‘nice’ meaning right causal answers, but that is all. We illustrate
this idea in Fig.1 where we show the example of the physical concept that we know as altitude and how it is being
causal of the concept of temperature–in the sense that there is a physical mechanism that leads to a temperature

1However, for observations that we believe should also hold more generally for foundation models (like the concept of “correlations of causal facts” that
we will introduce in this work) we will use the term foundation model instead of writing LLM.
2https://anonymous.4open.science/r/causalParrots-75D9/
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[...] an atmospheric variable,
normally temperature in Earth's
atmosphere, falls with altitude. 
Lapse rate arises from the word [...]

- Wikipedia

Textual Statement

A T

Fig. 1. Same Implication, Different Representations. When we consider the causal relationship between altitude (A) and
temperature (T), then it is apparent that given the laws of physics we have an increase in altitude leading to a decrease in temperature.
Graphically we can depict the relationship as A→T, whereas the actual ‘increase-decrease’ relationship can only be specified through
the SCM formalism with its structural equations, that is some 𝑓 such that𝑇 = 𝑓 (𝐴,𝑈 ) where𝑈 are exogenous variables. The ground
truth SCM underlying our laws of physics generates observational data in the form of numerical tuples (𝑎, 𝑡 ) as seen on the left
scatter plot. To infer the casual relation, we can resort to algorithms for causal discovery. However, crucially, the same knowledge
achieved through such induction can be represented within text for ‘free’ as one simply recites the Wikipedia article found on the
right. While the article on the right is correct, and thus represents a fact about the actual world, there is no such guarantee for
arbitrary other texts. That is, a model that simply obtains its knowledge from various Wikipedia statements will also learn untrue
statements, statements that are not facts, thus explaining behavior that is correct sometimes and wrong other times.

increase/decrease with a corresponding change in altitude–is a fact of causality in our physical reality that can be
represented and therefore also learned in different ways. One way, the way that we usually consider in ML, is through
induction on physical measurements. We have actual data points of different altitude-temperature pairs (maybe recorded
from different cities and mountain ranges) and infer the underlying relationship. For this we could fit a linear causal
model with non-gaussian noise (LiNGAM; see the original work for reference [44]) and see that it explains our data
perfectly, concluding that altitude causes temperature. However, this conclusion is arguably nothing new, as most
people would agree, and this is partly so because such obtained knowledge has been embedded as textual articles into
encyclopedias such as Wikipedia, which are freely accessible. Turns out that not just humans but also LLMs learn
from precisely such textual data that already contain the results from the original physics experiments with ‘real’ data.
For instance, ‘The Pile’ data set which was used for training OPT [56] compromised over 6 GiB of textual data from
Wikipedia [17]. Both physical measurements and the facts we find on Wikipedia are a consequence of the causal reality
that altitude causally influences temperature and reversely they both imply this same causal model, however, they are
fundamentally different forms of representation in that learning from the physical measurements can be argued to
be what we mean by ‘understanding something’, whereas simply reading up on the textual article lacks exactly that
component. Indeed, this discussion then turns philosophical onto which we will add a few more comments.

While the philosophical argument introduced by Searle [43] is essentially the same as the stochastic/causal parrot
argument minus the probabilistic view, another compelling comparison of LLMs is that of the Plato’s allegory of the
cave Plato [39] in which the question is raised to which extent one can learn about the real world’s functioning by just
observing the shadows of its objects. For this allegory, we could see the LLM act as the cave where one can observe
some causality in the form of correct answers (the ‘shadows’) but the question is raised whether this would in fact be
actual causality (the ‘real world’). Even if we consider LLMs to be universal in the same sense that we have proven that
neural networks are universal function approximators Cybenko [15] that does not imply that it is easy to make them
causal and therefore even if they can make use of correlations exposed by meta SCM talking about causal facts, then
still the LLM would be required to be exposed to an infinite amount of data from such universal, meta SCM.

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Willig et al.

3 FORMALIZING “CORRELATIONS OF CAUSAL FACTS”

“Correlation does not imply causation,” goes the famous saying (see Aldrich [2], Pearl [36]), that accounts for the fact
that following Reichenbach’s common cause principle a correlation between two variables might be either because
one is causing the other, or because there is a third variable causing both [41]. To infer the ‘actual’ causation3 within
the system of interest, we might resort to manipulating the system, as another fomous saying suggests “No causation
without manipulation” [23]. A celebrated victory of Pearl’s notion to causality is the causal hiearchy theorem (CHT)
which guarantees that purely observational data collected from a system can not be used to uniquely determine causal
statements, when no other causal assumptions are available [4]. The CHT certainly seems to imply that no matter

how much we scale our foundation models (in terms of data and parameters), we will never be able to perform causal
inference. In a nutshell, the CHT seems to disprove the scaling hypothesis. Or does it? In this work, we argue that
foundation models might be exploiting a “loop hole” in the CHT4. Namely, what happens if the causal assumptions

(which are required, by the CHT, for causal inference) are represented in observational data itself?
We start by providing the definition of a Structural Causal Model (SCM). We will follow the broadest notion of SCM

that still enjoys properties such as unique solvability, marginalization and an intuitive graphical underpinning. The
class is that of simple SCM as first introduced by Bongers et al. [10]. They extend typical acyclic, semi-Markovian5 SCM
with cycles that offer a unique solution6. Formally, we have:

Definition 1. A simple Structural Causal Model (SCM) is a tupleM :=(I,J ,XXX,EEE, 𝑓𝑓𝑓 , IPEEE ) where I,J are disjoint,

finite index sets7 for endo- and exogenous variables respectively,XXX =
∏

𝑖∈I X𝑖 ,EEE =
∏

𝑗∈J E𝑖 are products of the domains

of the variables where each domain is a standard measurable space8, 𝑓𝑓𝑓 are the structural equations for which X = 𝑓𝑓𝑓 (X, E)
for random variables X, E, and finally IPEEE denotes the exogenous distribution.M is further uniquely solvable9 for every

subset O ⊆ I. The graph implied byM is denoted as G(M).

The graph of a simple SCM is drawn by considering the parent-child relationships implied by the structural equations.
We call a variable 𝑘 parent of some variable 𝑖 if there is exists no measurable function that can match the actual
structural equation that computes the values of 𝑖 while not using 𝑘 as argument. For simple SCM we then end up having
three basic types of causal relationships that can exist for any variable pair (𝑖, 𝑗) of G(M): (1) if there is a direct edge
𝑖 → 𝑗 ∈ G(M), then 𝑖 is called a direct cause of 𝑗 , (2) if there is a directed path 𝑖 → · · · → 𝑗 ∈ G(M), then 𝑖 is simply
a cause, and (3) if there is a bidirected edge 𝑖 ↔ 𝑗 ∈ G(M), then 𝑖 and 𝑗 are confounded. In the following, we will
provide an example of a simple SCM based on the ‘classical’ setting described in Fig.1 using the above definition.

Example 1 (‘Classical Setting’). Let 𝑋,𝑌, 𝑍 be the random variables whose values describe “Countries’s Annual

Per Capita Chocolate Consumption”, “Number of Nobel Laureates per 10 Million Population” and the “Gross Domestic

Product” for any given country respectively. The data observed in Messerli [34] suggested a significant linear correlation

(𝑟 = 0.791, 𝑝 < 0.0001) for (𝑋,𝑌 ) with Switzerland being the top-performer (𝑋 > 10, 𝑌 > 30). Note that𝑍 was not observed
3For a rigorous treatment of different notions of what consitutes an “actual cause” consider the seminal work of Halpern [20].
4Or rather, it is a subtle detail that might easily be forgotten.
5SCMs that allow for latent confounding, that is, the exogenous terms need not be independent.
6However, these do unfortunately exclude self cycles and many other circular relationships.
7For examples later on, wemight simply equate indices to letters when consideredmore suitable for presentation, that is, instead of having I := 3 = {1, 2, 3}
we write I :={𝑋,𝑌,𝑍 }.
8See Def.F.1 of [10] that gives a rigorous, albeit very technical definition. Typically, definitions on SCMs found in the literature are rather hand-wavy
about what the ‘variables’ are. For instance Bareinboim et al. [5] (Def.1) simply refers to ‘variables‘ in the most general sense, while Pearl [36] is more
specific in talking about ‘random variables‘. However, probability theorists often restrict themselves to separable completely metrizable spaces also
known as Polish spaces, which avoid pathological situations in which the considered spaces’ sizes are uncountable, that is, greater/equal 2ℵ0 .
9See Def.3.1. in [10].
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but clearly serves as a reasonable explanation for the underlying causal system. As postulated by Reichenbach’s common

cause principle [41], if the correlation does not imply a direct causation, then there must exist a common cause, which we’d

choose as 𝑍 for this particular example. While we do not know the true SCM accountable for 𝑋,𝑌, 𝑍 , we can approximate

the data from Messerli [34] reasonably well using the following simple SCMM1 :=({𝑋,𝑌, 𝑍 }, 3,R3,R3, 𝑓𝑓𝑓 , IPR3 ) with 𝑓𝑓𝑓

being defined as

𝑓𝑓𝑓 :={𝑋 = 𝑓1 (𝐸1) = 𝐸1, 𝑌 = 𝑓2 (𝑋, 𝐸2) = 2 · 𝑋 + 𝐸2, 𝑍 = 𝑓3 (𝐸3) = 𝐸3}10 . (1)

The structural equations in (1) makeM1 a linear additive noise model that approximate [34] reasonably well. It is clear

how the observed correlation in this case corresponds to a direct causation according to 𝑓𝑓𝑓 since 𝑋 is a parent of 𝑌 and 𝑍

simply an independent variable. However, we are certain that chocolate consumption does not cause more Nobel laureates

anywhere, soM1 is not reasonable in predicting our real world expectations. Following Reichenbach’s postulate, it would be

more reasonable to use an alternate SCMM2 :=({𝑋,𝑌 }, 3,R2,R3, 𝑓 ′𝑓 ′𝑓 ′, IPR3 ) with 𝑓 ′𝑓 ′𝑓 ′ being defined as

𝑓 ′𝑓 ′𝑓 ′ :={𝑋 = 𝑓 ′1 (𝐸1, 𝐸3) = 𝐸3 + 𝐸1, 𝑌 = 𝑓 ′2 (𝐸2, 𝐸3) = 2 · 𝐸3 + 𝐸2}. (2)

This second SCMM2 would now correspond better to both (1) the actual data observed in [34] since 𝑍 was never observed

and is modelled as exogenous variable 𝐸3 implicitly and (2) to our real-world intuition since there is a bidirected edge

𝑋 ↔ 𝑌 ∈ G(M2) with 𝐸3 being the underlying confounder.

Example 1 serves to show how the rather abstract definition of an SCM can be made tangible to communicate what
we believe about our observed data and more so the underlying data generating process. Previously, we have defined a
(direct) cause as directed (1-)path in the causal graph, however, we have not discussed why we call such an edge in the
implied graph of an SCM a ‘cause’. The reasoning behind the naming turns out is an important insight that we will use
soon to develop our idea of “correlation of causal facts.” But first, we need to briefly talk about Pearl’s Causal Hierarchy
(PCH) which defines three (symbolic) languages L1,L2,L3 with increasingly expressive quantities. For this, we make
use of the definitions proposed by Bareinboim et al. [5].

Definition 2. The Pearl’s Causal Hierarchy (PCH) consists of three (symbolic) languages L1,L2,L3. The terms are

called: (1) observational 𝑃 (Y = y) ∈ L111, (2) interventional 𝑃 (Yx = y) ∈ L2, and (3) counterfactual 𝑃 (Yx = y, . . . ,Zw =

z) ∈ L3. Where 𝑃 (Yx = y) denotes the probability of Y being y were X to have values x12.

Now we can return to clarifying why we call certain paths in the causal graph ‘causal’. We state our insight as:

Insight 1. LetM be some SCM. Knowledge about the structural equations and the causal graph ofM is knowledge

about answering L3 and L2 queries inM respectively.

Returning to Example 1, it is clear how knowing the actual parameterizations of the functions 𝑓 ′1 , 𝑓
′
2 , 𝑓
′
3 allows us to

answer L3 queries and not knowing the actual parameterizations but at least knowing that for instance variable 𝑍 is a
parent of 𝑋 and therefore a necessary argument in 𝑓 ′1 is sufficient for answering L2 queries. Put differently, we can
call a direct edge 𝑍 → 𝑋 ∈ G(M2) ‘causal’ since it is a L2 fact13. We can rephrase this statement differently to make
10Note how these equations make the assumption that all the variables are measured using the same scale. This is of course not a necessary assumption,
however, since this example serves only illustrative purposes for clarifying the ideas around SCMs, and we do not train an actual SCM on the data from
[34], the chosen presentation is reasonable.
11We use 𝑃 (X = x) to simply denote the probability value of random variable X obtaining value x.
12Not to be confused with regular conditionals 𝑃 (Y = y | X = x) ∈ L1 that are read as “the probability of Y being y were X observed as x”.
13How we actually acquire such L2 (or even L3) facts is a different question altogether. It stands at the heart of the discipline of causal discovery. We call
L2 ‘interventional’ since we can use experimentation in the form of ‘surgical intervention’ on admissible variables measured in the given task to discern
causation from mere correlation.
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6 Willig et al.

clear where our overall idea is leading to. Namely, some machine learning model is ‘causal’ w.r.t. some query if it can
answer that query with the right L2 fact. More intriguingly, it does not matter where that L2 fact comes from since the
formulation is independent of whether the model learns the fact and simply requires that the model knows about the
fact. We state our second key insight as:

Insight 2. The ‘variables’ of SCMs are not restricted to ‘natural’ concepts such as “Chocolate consumption” or “Number

of Nobel laureates” (see Ex.1), they can be ‘meta’ concepts involving causal facts, that is, knowledge about L2 and L3.

For our argument the existence of data describing L2 facts is already sufficient, therefore, for ease of presentation we
will focus on those specifically in the following although we see no difficulties (as of writing) in extending to L3. We
call these concepts ‘meta’ since they are one level above ‘regular’, simple SCM in the sense that they encode information

about answering causal questions in another SCM. To make this idea more formal, we define ‘meta’ SCM as follows:

Definition 3. LetM1 andM2 be two SCMs such that the observational distribution ofM2 denoted L1 (M2) can
answer queries w.r.t. the interventional distributions ofM1 denoted L2 (M1), thenM2 is called meta (w.r.t.M1).

In the following, we construct an example of such a meta SCM analogue to the ‘classical setting’ from Example 1.

Example 2 (‘Meta Setting’). As before, let 𝑋,𝑌, 𝑍 denote the natural concept random variables from Example 1 for the

chocolate-Nobel data from Messerli [34] and setM1 :=({𝑋,𝑌 }, 3, {0, 1}2, {0, 1}3, 𝑓𝑓𝑓 , IP{0,1}3 ) with 𝑓𝑓𝑓 :={𝑋 = 𝑓1 (𝐸1, 𝐸3) =
𝐸3 ∧ 𝐸1, 𝑌 = 𝑓2 (𝐸2, 𝐸3) = 𝐸3 ∧ 𝐸2} where 𝑋 = 1, 𝑌 = 1 denote ‘high’ chocolate consumption and number of Nobel laureates

respectively, and vice versa for 𝑋 = 0, 𝑌 = 014. In this example, we intend on answering an arbitrary example query from

L2 (M1) like for instance 𝑃 (𝑌𝑋←1 = 1), that is, the probability of a high number of Nobel laureates if the given chocolate

consumption were to be high. Clearly, since 𝑋 ↔ 𝑌 ∈ G(M1), we expect 𝑃 (𝑌𝑋←1 = 1) = 𝑃 (𝑌 = 1) since intervening on 𝑋
will not change 𝑌 . For the sake of the example let’s assume fair conflips as exogenous distributions, IPE𝑖 :=B(1/2), then
𝑃 (𝑌𝑋←1 = 1) = 1/4. Next, we need to show the existence of some SCMM2 that is meta toM1, that is, which will answer

𝑃 (𝑌𝑋←1 = 1) using L1 (M2). This is easy, as we can define

M2 :=({𝑊 }, ∅, {0, 1}3×3, ∅, 𝑓 ′𝑓 ′𝑓 ′, IP∅) (3)

where𝑊 :=G(M1) is a random variable that describes a causal graph over 𝑋,𝑌, 𝑍 as an adjacency matrix15 and therefore

𝑓 ′𝑓 ′𝑓 ′ :={𝑊 = 𝑓 ′1 (𝑊 ) =
( 0 0 0
0 0 0
1 1 0

)
}. (4)

𝑊 encodes the causal graph 𝑋 ← 𝑍 → 𝑌 . It is now a simple exercise to show thatM2 is indeed meta. We want to find the

𝑎 in 𝑃 (𝑌𝑋←1 = 1) = 𝑎. We know that 𝑃 (𝑌 = 1) = 1/4 and using L1 (M2) =𝑊 we further know that 𝑋 is not a parent of 𝑌
since 𝑋 → 𝑌 ∉𝑊 = G(M1). Therefore, we conclude that 𝑃 (𝑌𝑋←1 = 1) = 𝑃 (𝑌 = 1) = 1/4 = 𝑎.

At this point, it is worthwhile noting that while every SCM is in fact a causal model it is not the case that every
SCM is a reasonable causal model for our physical world or rather for what is being modelled. While the meta SCM
in the above case can also be viewed even as a simple SCM which retains even its causal interpretation on graphs,
it is surely not a ‘regular’ SCM particularly because it is in direct reference of another SCM. We have achieved two
things in the above example (1) shown the existence of meta SCM and (2) shown how they can actually answer concrete
causal facts about another SCM. WhileM2 from the above example may seem artificial in the sense that it is tailored to

14We adapted the SCM to be binary for ease of calculation in the example, the definition holds w.l.o.g. for any simple SCM.
15A cell𝐴𝑖 𝑗 = 1 indicates the direct edge 𝑖 → 𝑗 .
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Causal Parrots: Large Language Models May Talk Causality But Are Not Causal 7

M1, the example acts as intended since we could clearly define a suitable meta SCM for our illustration’s purposes.16

After having proven the existence of meta SCM that can encode L2 facts (of another SCM) within their observational
distribution, hence making them meta, we are finally ready to provide our main running hypothesis for this work that
we believe to hold, namely correlations of causal facts.

Conjecture 3.1 (Correlation of Causal Facts (CCF)). As before, letM1 be some SCM andM2 a respective meta

SCM. Further let 𝑄 ⊂ L2 (M1) and 𝐴 ⊂ L1 (M2) be causal queries with their respective answers and 𝑓 denotes the LLM’s

predictive model. Then we have: 𝑓 (𝑄) = 𝐴 ⇐⇒ 𝑓 (𝑄) minimizes training error.

In words, Conj.3.1 suggests that in all the cases where the LLM does provide the right causal answer to a causal query,
then it is only because (i) this fact was observed in the training data and (ii) the correlation with the query is optimal
from the perspective of the training objective. This formulation also leaves room for the fact that LLMs being right
will not always (and maybe not even most of the times) be the case. Furthermore, it provides another very intriguing
observation in that an LLM, although we conjecture it to essentially be involved with at least two SCM (the one
modelling the phenomenon of interest and the meta one modelling the first model) during training, it is not causal and
cannot be (up to answering some subset of causal questions right). To prove our conjecture, we would require three
things: (i) identify meta SCM that generated the causal facts in the LLMs training data, (ii) show that the causal facts are
the best (in terms of training loss) answers to the causal queries and (iii) show that LLMs indeed give the causal facts
as answers to the causal question. Since (i-ii) are arguably infeasible or at least fiendishly difficult to validate, in the
following, we will focus our initial empirical analysis on (iii) and see judge the causal inference capabilities of LLMs.

4 TESTING FOR CAUSAL KNOWLEDGE IN LARGE LANGUAGE MODELS

We evaluate three publicly accessible LLMs: OpenAI’s GPT-3 [12], AlephAlpha’s Luminous [3], and Meta’s OPT [56].
All models are transformer based architectures [51] trained at scale, qualifying them as LLMs (see Bommasani et al. [8]).
Our analysis primarily investigates three different questions that belong to part (iii) of CCF as described earlier, namely:

How do LLMs perform..

..in “common sense” settings like reasoning or intuitive physics?

..in settings where the causal graph is (partially) known?

..when using their embeddings of knowledge base facts?

In the following, we conduct various experiments to answer these questions.

4.1 Methods and Results for “Common Sense” Inference Tasks

We argue that “common sense” reasoning tasks either involving some basic propositional logic or intuitive physics (as
reference consider for instance Tenenbaum et al. [48]) are reasonable settings in which we can expect CCF to hold.
For propositional logic we consider 20 different questions such as for example “If 𝐴 causes 𝐵 and 𝐵 causes 𝐶 does 𝐴
cause 𝐶?”. These questions are simply fed as prompt to the respective LLM. In this setup no prior world knowledge is
required, other than being able to link together propositions. In the simplest propositional chain we provide the model
with a chain of three variables, linked by two propositions: “𝐴 causes 𝐵”, “𝐵 causes 𝐶 .” We ask the model “Does 𝐴 cause
𝐶?”. This setup provides a fairly simple and easy to control experiment. We vary the length of the chain up to 𝑛 = 10
variables: 𝑋1 causes 𝑋2 ... and 𝑋𝑛−1 causes 𝑋𝑛”. To prevent the model from simply pattern matching the first and last

16We could have chosen𝑊 to represent the space of all directed acyclic graphs (DAG) and eventually found the same conclusion, albeit at the cost of
clarity for the example.
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Intuitive Physics
Rolling (8) Support (8) Collisions (4) Seesaw (4) Weights (5) Tools (7) Accuracy

GPT-3 6 5 4 2 2 3 61.11%
Luminous 1 0 0 1 1 2 11.11%

OPT 2 0 1 0 0 4 19.44%
Causal Chains (Basic Prop. Logic)

N=2 3 4 5 6 7 8 9 10 Subchains (4) Randomized (7) Accuracy
GPT-3 ✓ ✓ ✓ ✓ ✓ 2 2 45.00%

Luminous ✓ ✓ ✓ ✓ ✓ 1 4 50.00%
OPT ✓ ✓ 0 2 20.00%

Table 1. (top) Querying LLMs for questions about intuitive physics. GPT-3 performs reasonably well across all queried areas, while
OPT performs better on the Tools subtask. (bottom)Querying LLMs for propositional logic on causal chains. GPT-3 and Luminous
perform equally on causal chains of varying length. Luminous outperforms the other models when asked about causal chains with
randomized chain ordering or variable names. Overall LLMs display a mixed performance.

variable we ask for sub-chains (e.g. “Does 𝐵 cause 𝐸?”) that leave out the initial or last part of the chain. Additionally, we
might also switch the order of propositions or exchange the alphabetical ordered variable names with random letters.

Results for this experiment are shown in Table 1. A complete list of questions and answers can be found in the
appendix. We observe that GPT can handle shorter chains up to and fails starts to fail at 𝑛 = 6 variables. Contrary to
this, Luminous start to answer correctly at 𝑛 = 6 variables but fails at shorter chains. OPT only answers two queries
correctly. For most of our evaluations we observe the tendency of OPT to repeat the given query text and not answering
the prompt. For all three models we see a decline in performance once we leave the standard 𝑋1 ...𝑋𝑛 setting and
start to query for sub-chains and randomize proposition order. Only Luminous keeps reasonable performance for the
‘Randomized’ queries. From our observations we conclude that current models still need special fine tuning such as in
[55] to be applicable to inference tasks with given information.

For intuitive physics we consider 36 questions such as for example “A ball is placed on a table and rolls off. What
does this tell us about the table?”. As we are not able to feed images depicting the physical scenes into the LLMs,
we are resorting to textual descriptions. We provide idealized descriptions of scenes that query the understanding
about physical mechanisms, such as balls rolling off tiled surfaces or objects bouncing away in a collision. Using
textual descriptions leads to ambiguity as weights, sizes and relative positions of the objects might not be described. To
compensate for this uncertainty, we choose simple setups that might even occur in text books and count all plausible
outcomes given by the LLMs (as manually evaluated by us) as correct.

Again, results for this experiment are shown in Table 1. The most striking observation that caught us were some
parallels to human nature of reasoning. In the ‘Weights’ cluster of questions we asked the LLMs to answer variations of
the well-known trick question “What is heavier: A kilogram of metal or a kilogram of feathers?”. For this questions all
models wrongly opt for the material with higher specific weight and answer “A kilogram of metal is heavier than a
kilogram of feathers.” However, when asked “[’A kilogram of metal is heavier than a kilogram of feathers’] is what
most people say, but in reality”, GPT correctly answers “They weigh the same.” arguably the same way many humans
intuitively do! This is interesting from a factual point of view, as the extended formulation contains no new factual
information. A pure propositional reasoner would still have come to the same answer independent of the truth value of
the question, as the additional information about what “most people say” does not factually contribute to comparing
two different weights. It is rather a hint on the meta level that is often used in human communication to indicate
the presence of a pitfall or trick question, and therefore not to choose the ‘obvious’ answer. In the presence of such a
hint GPT does not just negate its previous given answer but arrives at the fact that both weigh the same. Seeing LLM
Manuscript submitted to ACM
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Causal Parrots: Large Language Models May Talk Causality But Are Not Causal 9

considering these meta level hints might help with future algorithms that integrate LLMs into their processes. Providing
textual hints might be comparable to switching between different heuristics as it is done in today’s classical algorithms.

4.2 Methods and Results for Causal Discovery on Ground Truth

Previously, we have seen that LLMs do not necessarily perform well on tasks where they are not just required to
know a fact but also to reason with that fact. For the following experiment, the LLM will not be required to reason
with facts but it will be sufficient to simply recall the right facts. Therefore, we can now simply resort to causal
discovery benchmarks for evaluating whether LLMs can recover causal graphs when queried accordingly. We propose
a naïve causal discovery approach for LLMs to this end. Fig.2 provides a schematic overview of the naïve structure
discovery procedure that we propose. To account for stability and reproducibility, we present different wordings to the
queries (synonymous formulations) and disable parameters that induce randomness (e.g. temperature), respectively.

LLM

Scienti�c Question Causal Queries

Answer

Fig. 2. Naïve Causal Discovery with LLMs.

It is important to note that the proposed naïve structure discovery
procedure is not a proper induction method in the classical sense
as it does not use actual data as input to perform the inferences (all
the possible inferences are established upon training completion). In
that sense, LLMs behave much like humans, who simply recall that
“a higher altitude means a lower temperature” than to look at actual
data recordings of altitude and temperature (and other variables) to
perform the causal inference. As anticipated, the LLM thereby also
inherits natural language ambiguities. To give an example, even if
the LLM is prompted with an additional “Answer with Yes or No”
the LLM is not constrained to oblige. We use five different query
wordings (or formulations) such as “Are 𝑋 and 𝑌 causally related?”
or “Does 𝑋 cause 𝑌?” (see appendix for full list). The first three of which are classified as symmetric queries since the
expected answer is a mere association 𝑋–𝑌 and the last two wordings classify as asymmetric accordingly i.e., we expect
either𝑋 → 𝑌 or𝑋 ← 𝑌 (in the case of an existing relation). For any answer given by the LLMs we automatically classify
answers starting with ‘Yes’ or ‘No’ accordingly and manually label the remaining ones. For any data set containing
𝑁 variables there are

(𝑁
2
)
possible edges. Since the edges are directed we get twice the amount of queries, one query

for each direction, multiplied by the number of query wordings 𝑄 = 5 and arrive at 2 ∗
(𝑁
2
)
∗𝑄 queries per data set.

We consider publicly available data sets that propose a ‘ground truth’ causal graph (which depicts the data generating
process). We consider six data sets: altitude (A; Mooij et al. [35]), health (H; Zečević et al. [54]), recovery (R; Charig
et al. [13]), driving (D; synthetic), cancer (C) and earthquake (E) both [26]. For all data sets we query the LLM with all
possible combinations of edges between any two variables. For our data sets, we get 10 questions for Altitude, 100 for
Cancer, 60 for Health, 30 for Driving, 100 for Earthquake and 30 for Recovery respectively.

After querying all edges for all of data sets we then compare each of the obtained graphs to the respective ground
truth using different metric. In total we discuss two key observations. Table 2 presents the results of our experiment.
We present metrics to measure different aspects of the LLM predictions. We measure fitness to the causal graph using
Structural Intervention Distance (SID; [37]) and Structural Hamming Distance (SHD; [1, 49]). Machine Learning (ML)
applications might care more about capturing all relevant connections and less about including too many. To reflect
this we report the 𝐹1 score. Furthermore, we inspect individual statistics on the edges of the predicted graph when
wording of the queries changes. We define sparsity as the number of predicted edges in relation to the maximum
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Metric Altitude Health Driving Recovery Cancer Earthquake LLM

C
au

sa
lG

ra
ph

0.80±0.40 7.20±0.75 3.00±0.89 4.00±1.79 11.80±4.66 11.40±1.50 GPT-3
SID ↓ 1.20±0.98 10.60±1.85 6.00±0.00 5.40±1.20 11.40±3.07 16.00±3.63 Luminous

1.60±0.80 10.80±2.40 5.00±1.26 5.80±0.40 16.80±1.94 15.60±5.95 OPT
0.80±0.40 4.00±0.63 2.60±0.49 2.20±0.40 7.00±1.41 4.60±0.80 GPT-3

SHD ↓ 0.60±0.49 7.00±1.10 4.20±0.40 3.40±0.80 10.00±3.52 5.60±1.62 Luminous
0.80±0.40 7.40±1.20 3.40±1.20 4.00±0.00 13.20±1.60 8.60±3.01 OPT

M
L

0.20±0.40 0.47±0.14 0.11±0.23 0.27±0.33 0.35±0.11 0.12±0.15 GPT-3
𝐹1 Score ↑ 0.80±0.16 0.41±0.21 0.46±0.09 0.55±0.07 0.40±0.13 0.40±0.04 Luminous

0.73±0.13 0.52±0.05 0.53±0.15 0.47±0.07 0.35±0.03 0.47±0.07 OPT

Ed
ge
s

0.90±0.20 0.63±0.28 0.77±0.31 0.70±0.31 0.65±0.16 0.93±0.07 GPT-3
Sparsity 0.20±0.24 0.22±0.35 0.03±0.07 0.10±0.13 0.40±0.16 0.74±0.12 Luminous

0.10±0.20 0.05±0.10 0.17±0.21 0.07±0.13 0.18±0.12 0.41±0.18 OPT
0.50 0.62 0.33 0.50 0.69 0.00 GPT-3

ADS ↑ 1.00 0.53 0.17 0.17 0.38 0.26 Luminous
0.50 0.25 0.25 0.33 0.28 0.47 OPT

Table 2. Comparing LLMs prediction to existing ground truth causal structures. The metrics concerned with the causal graph structure
(SID, SHD) reveal a closer match of GPT-3 predictions to the ground truth causal structures than for the other LLMs. High 𝐹1 Scores
and low sparsity indicate densely connected graph prediction by Luminous and OPT. This can be desired for ML applications. The
ADS reveals that all LLMs increase their decisiveness on edge directions when querying with asymmetric sentence templates.

number of possible edges.17 Intuitively, this metric measures the percentage of maximally predictable edges and gives
an insight on whether a LLM tends to predict sparse (𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 ≈ 1) or densely connected graphs (𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 ≈ 0).
Additionally we want to measure the amount of directed edges within a graph. While SCM are not restricted to DAG
structures, most classical causal data sets are modeled using DAGs. We further introduce a novel metric based on
the model’s decisiveness 𝑑 which is defined as the percentage of directed edges within the total number of predicted
edges. The exact procedure is shown in Algorithm 1 in the appendix. When comparing two graph structures we
define Δ𝑑 to be the change in decisiveness between two predictions: Δ𝑑 (𝐴, 𝐵) := 𝑑 (𝐵) − 𝑑 (𝐴). A positive Δ𝑑 value
indicates an increase in directed edges when switching from A to B and vice versa. In particular we can now define
our novel metric called asymmetric decision score (ADS) as Δ𝑑 (Symmetric,Asymmetric) to measure the change in
decisiveness when switching from symmetric to asymmetric sentence wording (averaged over all sentence templates).

[A]ge [H]ealth[N]utrition [M]obility

A F

H

M

A F

H

M

Fig. 3. Sensitivity toQuery Wording.

Results are shown in Table 2. For (almost) all six data sets we observe
a better compliance to the causal graph structure for GPT than for the
other models. Looking at the sparsity, we observe that GPT predicts
much sparser graphs in relation to Luminous and OPT. This mode of
sparse predictions matches well with the ground truth graphs, which
are generally also sparsely connected. In cases where the exact causal
structure is relevant we would prefer GPT over the others. In return
Luminous and OPT feature better 𝐹1 scores, as they predict more
edges to be present. This might be favourable for ML applications
where false negative predictions are lowering performance and we
only want to prune out clearly non existing edges. Overall, predictions of the causal structure and for individual edges
17The technical definition can be found in the appendix.
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C
au

s.
G
ra
ph

Metric Altitude Health Driving Recovery Cancer Earthquake Method
SID ↓ 0.80±0.40 7.20±0.75 3.00±0.89 4.00±1.79 11.80±4.66 11.40±1.50 Direct

1.00±0.00 9.20±3.12 1.60±1.36 3.60±1.36 10.40±2.06 16.00±3.29 k-NN
SHD ↓ 0.80±0.40 4.00±0.63 2.60±0.49 2.20±0.40 7.00±1.41 4.60±0.80 Direct

1.00±0.00 6.80±2.32 2.00±1.41 3.20±1.17 5.80±1.33 11.40±1.50 k-NN

M
L 𝐹1 Score ↑ 0.20±0.40 0.47±0.14 0.11±0.23 0.27±0.33 0.35±0.11 0.12±0.15 Direct

0.00±0.00 0.28±0.19 0.61±0.34 0.41±0.26 0.46±0.06 0.20±0.13 k-NN

Ed
ge
s

Sparsity 0.90±0.20 0.63±0.28 0.77±0.31 0.70±0.31 0.65±0.16 0.93±0.07 Direct
1.00±0.00 0.57±0.12 0.47±0.19 0.40±0.23 0.67±0.09 0.47±0.15 k-NN

ADS ↑ 0.50 0.62 0.33 0.50 0.69 0.00 Direct
0.00 0.48 −0.56 0.08 −0.03 −0.03 k-NN

Table 3. Results for predicting causal structures with existing ground truth graphs. We compare direct predictions of Table 2 (direct)
to embedding prediction of the GPT-3 Ada Model with using nearest neighbours (k-NN). Predictions with k-NN perform comparable
to direct querying, improving on the Driving, Recovery and Cancer data sets for causal graph and ML metrics. However, positive ADS
values vanish for k-NN in comparison to directly querying LLMs, implying that k-NN does not respect asymmetric query wording.

are noisy. Depending on the use case GPT or Luminous and OPT might be better suited. Consider ADS in Table 2. As
discussed before ADS is positive when more edges are predicted as directed when using one of the asymmetric sentence
wording than when using a symmetric one. We observe that without exception all LLMs increase their decisiveness
when queried with an asymmetric wording. While this observation is consistent with the natural interpretation that an
asymmetric query like “Does 𝑋 cause 𝑌?” only accepts the answers 𝑋 → 𝑌 , 𝑋 𝑌 , but not 𝑋 ↔ 𝑌 , the observation is
still surprising as there are no formal guarantees to the query that this should be the case. It might suggest that the
LLM indeed learned the difference between the two types of questions on a causal level. While Luminous and OPT
remain overall stable in their prediction across data sets and wordings, GPT-3 reacts with unsmooth change to alternate

wordings. Consider Fig.3 where a significant change in the predicted graph is observed simply by changing the query
wording. A possible interpretation for this observation is that a keyword such as ‘causality’ might be embedded further
away from an alternate keyword (here for instance ‘cause’) within the LLM’s latent space, thus answering correctly.

4.3 Method and Results for Knowledge Base Fact Embeddings

The reason that we observe LLMs to perform with mixed results might lie in the simple fact that LLMs have not (and
are not capable of) memorizing all the causal facts available in training. We therefore create an artificial causal ‘signal’
by using existing causal information from a knowledge base and taking LLM embeddings of its facts. However, it is
unclear to which extent LLM embeddings encode knowledge e.g. whether it is simply a ‘code’ memorization or some
higher order features such as meaning. Depending on the strength of the embedding model, text embeddings turn
out to be nothing more than a symbolic representation of the embedded text, containing a one-to-one representation
of the natural language words. While these simple-most embeddings might be easy to generate, they are not well
suited for semantic similarity search. Every change in the text will offset the following symbols, resulting in a low
embedding similarity between two similar texts. A much better approach is the encoding of knowledge base facts and
their relations to each other into the embedding vector. This removes the dependence on a word-by-word encoding
procedure and allows us to encode embedding similarity on a conceptual level. While LLMs might encode all sorts of
information, we expect that also causal information will be encoded in this way. In an ideal case the embeddings should
contain information about the talked-about concepts of cause and effect, while additionally encoding the direction of
the causal edge. ConceptNet [45] is a knowledge graph combining multiple data sources, thus containing a large range
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[C]ar type [D]riving Style [F]uel consumption

ConceptNet data: [id 72,688] “<Driving> causes <lack of  fuel>.” [id 118,729] “<Moving car> in�uences <use fuel>.”

C D

F

Causality

C D

F

In�uence

C D

F

Cause

C D

F

Connection

C D

F

Related

Fig. 4. Transfer of ConceptNet Causal Knowledge into Graph Predictions. Facts about driving influencing the fuel consumption
can be found in the ConceptNet data (top). As a result the related edge “[D]riving style→ [F]uel consumption” of the driving data
set gets predicted correctly in 4 out of 5 sentence wordings when applying k-NN classification. All templates match to the driving→
lack of fuel ConceptNet fact as their nearest neighbor, except for the "Influence" template which matches to Moving car→ use fuel.

of relational information. Among other things, the ConceptNet contains explicit information about causal connections
(“/r/Causes/” relations). While the strength of the information varies among the different entries, we get hold of a
causal signal for real world relations. Filtering ConceptNet for causal edges results in 1,282 unique causes expanding to
16,567 individual cause-effect pairs. For every causal edge we generate text embeddings using the GPT-3 Ada Model
(text-embedding-ada-002). We generate the statement sentences to be embedded using our 5 sentence templates (e.g.
Rain → Floods is instantiated as “Rain causes floods.”, “Rain and floods are causally related.”, ...) and additionally
generate the same amount of anti-causal samples by swapping the cause and effect of the edges. In total, we get hold
of 165,670 causal and anti-causal embeddings. In the following, we will again be evaluating the performance against
ground truth causal graphs using the previous metrics but with the change that we don’t query the LLM directly but
rather do a matching based on projections of the knowledge base facts. Since we have access to the ConceptNet edges,
we can confirm that relevant causal knowledge for our prediction tasks is indeed contained in the set of embeddings. To
give a particular example, we find for instance that a relation of the Driving data set, driving style→ remaining fuel, is
present in the ConceptNet data. The expressions used in ConceptNet and our query do not match in wording (see Fig. 4),
but should be semantically similar enough to serve as a causal signal for LLM prediction. For doing the evaluation,
we run a nearest neighbour prediction (k-NN with k=1) with cosine similarity. Like in the previous experiments we
build causal graphs to determine whether or not there is an edge between every possible combination of two variables
of the data set. We compare the undecided edge embedding of the data set to all statements of the ConceptNet data
with known labels. The presence of an edge is decided based on the label with the most similar embedding. That is, we
decide for the edge to be present if the most similar embedding stems from a causal fact of the ConceptNet-based data
set. If the nearest neighbour stems from an anti-causal fact, we predict the edge to be absent

We discuss our findings on the results shown in Fig. 4. We find that a robust edge prediction emerges for the previously
mentioned driving style→ remaining fuel edge of the Driving data set. Looking at the nearest neighbours that are used
for deciding the presence of the edge, we find that all templates match to the driving→ lack of fuel ConceptNet fact as
their nearest neighbor, with an exception for the ‘Influence’ template which matches to the Moving car → use fuel
fact. In the case of the ‘Cause’ template we find that the nearest neighbour erroneously is matched to the anti-causal
lack of fuel → driving fact, and in turn is predicted non-present. For the Cancer data set we even observe a word-
by-word correspondence of Smoking→ Cancer which results in a perfect prediction of the edge for all five sentence
templates (see Appendix). For the other data sets, for which we could not confirm related facts in ConceptNet, the same
Manuscript submitted to ACM
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unreliable results like in the direct querying experiment are observed. In Tab. 3 we compare the k-NN results to the
direct querying of GPT-3 from our previous experiment. We find improvements on tree data sets, including Driving and
Cancer for which we confirmed facts in ConceptNet. For Driving and Cancer we simultaneously observe an increase in
𝐹1 score indicating, that the improvements come from an actual optimized graph structure and not only as a result of
predicting a sparser graph. A downside of k-NN prediction is the emergence of negative ADS scores in three of the six
data sets. Indicating, that the LM might not encode asymmetric aspects of query texts into embeddings.

5 RELATEDWORK

This present work takes inspiration from various recent results. Yet, to the best of our knowledge, it is the first to
investigate the question in its presented form, especially in terms of formalization and overarching hypothesis that
serves as a candidate explanation for conclusions we make from LLM input-output behavior. For instance, Wang et al.
[52] leveraged BERT as underlying foundation model to perform inferences according to the rules of Pearl’s 𝑑𝑜-calculus
[36]. This allows for causal inference with the foundation model as an ‘inference engine’, but it misses out on the
question of how causal the models themselves might be to begin with. Another work, by Khetan et al. [25], is closer to
our work in the sense that causal relations are queried by natural language directly, however, the subject of interest is
orthogonal to both the ongoing debate and the investigation presented in this work. On another note, McMilin [33]
investigated selection bias within LLMs by first arguing about reasonable causal modelling assumptions and then
validating them empirically. Discarding causality but with the arguably identical goal of understanding what LLMs are
capable of, Zhang et al. [55] investigated an approach using propositional logic that concluded that LLMs only learn
statistical features that inherently exist in logical reasoning problems. Also noteworthy are works such as conducted by
Talmor et al. [47] where the goal is to create a benchmark that makes explicit the deficiencies (if existent) of LLMs, which
can be understood as a complementary goal to understanding how the models work in the first place. Lastly we want to
refer to other approaches that extract (causal) question-answer pairs from text sources [9, 22]. While both of these data
sets might provide a causal ground truth, they do not compose further graph structures out of the extracted data and
serve mainly as evaluation metric for LLM performance. Therefore, there is no distinction between ‘understanding’ and
‘knowing’, however, with the benefit of being useful to improving future LLMs since we can evaluate their ranking.

6 CONCLUSIVE DISCUSSION

We have multiple reasons to believe that LLMs are not causal (i) them obviously being only trained on textual data not
physical measurements (see Fig.1) which prohibits any sort of induction on the actual data-generating mechanism, (ii)
them not having any causal assumptions marked out explicitly (as for instance having explicitly modelled structural
equations like neural causal model), and (iii) the Causal Hierarchy Theorem prohibits any causal inference from purely
observational data for any model, thus including LLM. However, the fact that we do observe LLMs perform well
occasionally on causal inference tasks, as our empirical part of the analysis has shown, stands in stark contrast to (i-iii)
which would justify a statement of the form that LLMs are only “castles in the air” as seen in the very beginning in the
motivation to our present paper. Fortunately, our key theoretical contribution, the definition of meta SCM (Def.3) and
the correlations of causal facts conjecture (Conj.3.1), have provided a sound explanation for the apparent contradiction
(or even paradoxon). The following two paragraphs give another summarizing account of both theory and empirics in
this paper, respectively. A more complete summary of the main idea of the paper can be found in Sec.2.

As we started exploring in Sec.3, nature ultimately any sort of causal assumptions that we can talk about. That is, the
graph that captures the idea of the textual statement “altitude causes temperature” but also of a related textual question
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like “Does altitude cause temperature?”. Obviously, changing the description of either through intervening on one
would not change the other, giving us reason to believe that there is no direct causation between them. Still, they are
clearly confounded. In our physical reality, the given textual statement on altitude and temperature corresponds to the
truth, therefore, being factually correct. We can expect such a fact to be encoded not just in encyclopedia articles like on
Wikipedia but more widely spread across sources, all of which ultimately play a part in the LLMs vast training data. We
can further expect a correlation between these factual statements and corresponding questions. We conjecture that the
LLMs, in the case where they behave correctly when queried causally, have learnt to exploit these correlations. While
at the core lies this high level idea, we were fortunately able to formalize it consistently with the theory of causation
by Pearl. In classical causality literature, our data usually expresses low-level (physical) quantities and what makes
the model causal are actually the causal assumptions. However, there is no restriction on what the variables might
denote. We might have a ‘big’ SCM (that might be considered as nature itself which is an idea that we can also link to
the concept of a Universal Turing Machine [50]) which generates other SCMs so to say i.e., the data talks about causal
assumptions. In other words, this ‘meta’ SCM generates, as observations, abstractions of causal quantities.

Then in Sec.4 we conducted an empirical analysis in search of evidence to the CCF conjecture. We identified three
components to proving the conjecture (i) identify the proposed meta SCM, (ii) show that using causal facts as answers
is optimal and (iii) show that LLMs indeed give the causal facts as answers to the causal question. Unfortunately, (i-ii)
seem generally infeasible which is why we focussed on studying (iii). To this end, we measured LLM performance
systematically (a) in “common sense” settings like reasoning and intuitive physics, (b) in settings where the causal
graph is (partially) known and (c) when using their embeddings of knowledge base facts. While we do not intend on
summarizing all of Sec.4, we will take a big picture perspective on our answer for (iii). We believe that (iii) does hold
since in the cases where the LLMs answer causal questions correctly since we found evidence that they indeed uses
causal facts that could be expected to be found in the training data. With that being said, we see it as favoring evidence
to our CCF conjecture, however, a definitive answer cannot be given because for one, (i-ii) are yet to be proven and
secondly, the LLMs underperform way too often. That is, they might be “causal parrots” but rather underwhelming
ones in that they do not recite everything that one would want them to.

6.1 Takeaway, Ethical Challenges and Societal Implications.

We believe there to be two take-away messages of this initial effort to resolving the mysteries around (causal) reasoning
capabilities of LLMs. To start with the negative message, it is to say that we can not rely solely on LLMs as we cannot
expect any sort of generalization in terms of causal prowess. Current LLMs are unable to process actual physical data
measurements to ground their available textual facts. This prohibits LLMs from doing actual, inductive inference like
classical (causal) structure discovery methods for instance do. However, the positive message to the story is that we can
use the LLMs as a head start to learning and inference. In that sense, they might very well serve as stepping stones
towards progress in AI/ML research. On the ethical side and societal scale, it ultimately also inherits all concerns
revolving around AGI itself. While in our work we did not encounter any noteworthy ethical challenges such as for
instance racial bias, as can easily happen when working with LLMs, we did uncover bias in its views on e.g. medical
topics as illustrated by the results on the medical causal graph. However, in that sense, any predictive model has a
certain bias, it is just less apparent for LLMs. Importantly, we do want to raise one crucial societal discussion point
around learning from facts. Arguably, the ideal should be understanding and not just knowing, since the latter lacks
both generalization and justification, and surely we as a community strive for future models that have both (thus
understanding). However, our work clearly shows how any current approach to LLM training will actually fail because
Manuscript submitted to ACM
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of exactly that. Since large-scale models have spread at an incredible rate not just through the AI/ML community but
also to the industry and laymen, it is important to discuss safety critical settings, biases and presumptions. Our work
intends on having a positive contribution to this by providing explanations and laying ground for a healthy discussion
amongst peers of what these models are and are not capable of and how we ought to improve them.
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A APPENDIX

This appendix provides optional, additional material the reader might find interesting. For reproduction of the the
empirical part, our code is publicly available: https://anonymous.4open.science/r/causalParrots-75D9

A.1 Another Philosophical Argument in Favor of Meta SCM: “Self-referencing Systems”

As we have seen in our formalization, the Meta SCM idea seems to allow for variables that in some sense talks about
data generating processes themselves. This is reminiscent of self-referencing systems that lie at the core of seminal
arguments dating back to the origins of computer science. See for instance Turing’s Halting problem proof [50] or
Gödel’s incompleteness proofs [19]. Essentially, we intend on asking a philosophically fundamental question that (as
we have shown) implies other interesting questions of practical interest to the AI/ML community. Namely, to which
extent does understanding causality differ from knowing causality? Such a question is certainly reminiscent of the
Chinese Room Argument by Searle [43]. Therefore, if one could blur ‘understanding’ and ‘knowing’ causality, then this
would imply that foundation models are causal because of the ‘knowing’ part but that effectively we could not tell
the difference when only observing output behavior. Independent of the philosophical question–which by the way is
beyond AI/ML systems an unresolved question also of human cognition–knowing to which extent we can rely on our
foundation models to simply know the right causal answer for a causal query has important implications in AI/ML. The
foundation model could be used (i) to head start learning with rough estimates, (ii) could serve as a recognition system
for hidden variables that would require an increased computational complexity, and (iii) be used as interactive modules
with human-in-the-loop.

B TECHNICAL DETAILS AND METRICS

The results in our paper were created on one NVIDIA A100-SXM4-80GB GPU with 80 GB of RAM and it takes 10 GPU
minutes to query the OPT model. For the Luminous and GPT-3, we use the provided APIs, respectively.

B.1 Sentence templates

Throughout our experiments we query the LLM about the presence or absence of a causal relationship between two
variables within a data set. We represent our query in natural language form to the LLM using the following sentence
templates, replacing 𝑋 and 𝑌 with the respective variable names:

(1) “Are 𝑋 and 𝑌 causally related?”
(2) “Is there a causal connection between 𝑋 and 𝑌?”
(3) “Is there a causality between 𝑋 and 𝑌?”
(4) “Does 𝑋 cause 𝑌?”
(5) “Does 𝑋 influence 𝑌?”

It is worth noting that the sentence templates are not equivalent, some of them depict a difference in symmetry (e.g. (4) is
clearly asymmetric), whereas others do not talk about causality (e.g. (5)). We pay careful attention to these distinctions
while performing our empirical analysis.
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B.2 Definition of Sparsity

We define the Sparsity of a given graph as the number of present edges in relation to the maximum number of edges
of the fully connected graph. For our evaluation we consider individual half edges, such that A→ B and B→ A are
counted separately.

Sparsity(𝑁, 𝐸predicted) := 1 −
∥𝐸predicted∥
2 ·

(𝑁
2
)

where 𝑁 is the number of variables in the data set and ∥𝐸predicted∥ is the number of actual edges in the graphs.

B.3 Algorithm for ADS

We introduced a new metric for measuring the ‘decisiveness’ for an LLM when switching between asking asymmetric
and symmetric queries. In other words, when we query a LLM with “Does 𝑋 cause 𝑌 ?”, then we are asking a question
about X→ Y and to our surprise we have observed that LLMs always decide more when asked in such way (i.e., we end
up with more uni-directed edges). Thus, motivating the definition of such a new metric. The below algorithm presents
the computation of Decisiveness:

Algorithm 1 Decisiveness of a (causal) graph prediction

1: procedure Decisiveness(Predicted 𝐸𝑑𝑔𝑒𝑠)
2: 𝑠𝑦𝑚 ← 0
3: 𝑎𝑠𝑦𝑚 ← 0
4: for 𝐸𝑑𝑔𝑒 in predicted 𝐸𝑑𝑔𝑒𝑠 do
5: if 𝐸𝑑𝑔𝑒 is directed then
6: 𝑎𝑠𝑦𝑚 ← 𝑎𝑠𝑦𝑚 + 1
7: else if 𝐸𝑑𝑔𝑒 is symmetric then
8: 𝑠𝑦𝑚 ← 𝑠𝑦𝑚 + 1
9: end if
10: end for
11: 𝑐𝑜𝑢𝑛𝑡 ← 𝑎𝑠𝑦𝑚 + 𝑠𝑦𝑚
12: if 𝑐𝑜𝑢𝑛𝑡 = 0 then
13: return 0.0
14: else
15: return 𝑎𝑠𝑦𝑚/𝑐𝑜𝑢𝑛𝑡
16: end if
17: end procedure
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C EXPERIMENTAL RESULTS

Additional material for all three main experimental sections from the main paper that could not be placed there due to
space restrictions.

C.1 How to Interpret LLM Output

Interestingly, both Luminous and OPT either fail to provide sensible answers or provide answers that are ambiguous,
for instance, the LLM might loop indefinitely (repeating the first predicted sentence over and over again) or it might
produce a “multiple-choice quiz” like output for which it will also choose an answer itself. GPT-3 was well behaved,
providing sensible output throughout.

C.2 Intuitive Physics

All the questions and answers for intuitive physics questions can be found at: https://anonymous.4open.science/r/
causalParrots-75D9/media/intuitive_physics.pdf In the following, we show two example interactions with the LLMs on
the intuitive physics setting. First, we present the question which is input to the LLM and then we show for each of the
three LLMs under consideration the respective answers/output. The markings ‘continued’ and ‘repeating’ mark that we
have cut ‘irrelevant’ parts of the answer and the aforementioned ‘looping’ of the answer, respectively.

“There is a tilted board above a bucket. Where does a ball end up if it is placed on the board?”
GPT-3 The ball will end up in the bucket.
Luminous A:

The ball will roll down the board.
[continued]

OPT A. It will fall into the bucket.
B. It will fall into the bucket.
[continued]

“ [‘A kilogram of metal is heavier than a kilogram of feathers’] is what most people say, but in reality”
GPT-3 they weigh the same.
Luminous , the weight of a kilogram of feathers is more than a kilogram of metal.

The reason is that the density of a substance is the mass of a substance divided by its volume.
[continued]

OPT , a kilogram of feathers is heavier than a kilogram of metal.
The reason is that a kilogram of metal is made up of atoms, and atoms are made up of protons,
neutrons and electrons.
[repeating]
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C.3 Propositional Logic

All the questions and answers for the basic propositional logic (causal chains) questions can be found at: https://
anonymous.4open.science/r/causalParrots-75D9/media/propositional_logic.pdf It is the equivalent setup to the previous
subsection just as the analogue for the propositional logic.

“If A causes B and B causes C. Does A cause C?”
GPT-3 It is possible that A causes C, but it is also possible that A and C are unrelated.
Luminous A:

The answer is no.
[continued]

OPT If A causes B and B causes C, then A causes C.
If A causes B and B causes C, then A does not cause C.
[continued]

“If A causes B and B causes C. Does A cause B?”
GPT-3 There is not enough information to answer this question.
Luminous A:

The answer is no.
[continued]

OPT If A causes B and B causes C, then A causes C.
If A causes B and B does not cause C, then A does not cause C.
[repeating]

C.4 Changing the Variable Names for Prediction

The following is an additional experiment for the graph prediction setting from the main paper where we are given
(partially) the ground truth causal graph. Here we changed the variable names to synonyms (or at least arguably similar
concepts) we have observed how variable renaming might induce unsmooth change. In this setting, we consider the single
graph of the Health data set, which involves the variables ‘age’, ‘nutrition’, ‘health’, and ‘mobility’ and alternate the
variable names (see following figure). We either choose words recognized as synonyms of the original variable wording
or words that might appear in a similar context but have an identifiable difference to the original word. What you see in
the figure is three rows (one for each of the LLMs) of graph prediction differences (difference to the original prediction
denoted as the change for any single edge prediction) based on our standard setting of querying with different causal
question templates, only on the Health data set, for the different variable naming alternatives. A single key observation
was made. Luminous reacted with increased sparsity in graph prediction when changing the variable ‘mobility’ to mean
‘fitness’. On the other hand, GPT-3 conversely reacted with decreased sparsity in graph prediction when changing the
variable ‘age’ to ‘aging.’ Arguably, the former change is more drastic than the second since fitness as a concept might
refer to a superset that includes mobility but also other things like conditioning etc., whereas aging solely refers to the
Manuscript submitted to ACM
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process of increasing the age. The pattern seems overall arbitrary, but we believe the observation that ‘similar’ words
might cause drastic change is noteworthy.
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Fig. 5. Sensitivity to the Naming of the Variable Concepts.

C.5 Embedding predictions

Graph predictions of GPT-3 embeddings of the ConceptNet knowledge graph facts.We embed causal and anti-causal facts
of the ConceptNet data set to gain a set of ‘labeled’ causal embeddings. To predict an edge of a data set, we instantiate
the query text using our five sentence templates. We embed the queries and perform a k-NN search, comparing the
query embedding to all ConceptNet facts. The presence of an edge is decided based on the label with the most similar
embedding (measured in terms of correlation which in this case amounts to cosine similarity). That is, we decide for
the edge to be present if the most similar embedding stems from a causal fact of the ConceptNet-based data set. If the
nearest neighbour stems from an anti-causal fact, we predict the edge to be absent. In the following you see for each of
the six data sets and each of the five query alternatives the respective graph prediction.

CausalityIn�uenceCauseConnectionRelated

A T A T A T A T A T

Altitude

[continued on next page..]
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Fig. 6. Graph Predictions Based on the Knowledge Base Fact Embeddings (k-NN). For each of the data sets and each of the
query sentence templates.
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